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Abstract

This study, conducted in collaboration with Ericsson Research, explores
the potential of utilizing metric data for predictive analytics within IT
operations. The primary objective is to address underutilized data by in-
vestigating its utility in forecasting future trends and behaviors. The
research is driven by two key questions: to what extent can metric
data inform predictive behaviors and the identification of specific met-
rics most valuable for predictive analysis? The study focuses on three
main aims: evaluating the quality and predictive suitability of Zabbix-
collected data, assessing the strength of correlations within the datasets
using industry-standard analytical techniques, and developing an infer-
ence model based on identified metrics. Initial findings indicate that
while the metric data holds significant potential for predictive analytics,
it exhibits high individuality among hosts, requiring careful feature se-
lection and temporal resolution analysis. This research lays the ground-
work for future studies to utilze datasets at Ericsson Research.
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1 Introduction

In the contemporary landscape of industrial standards, data centers are mandated to achieve
unwavering operational continuity, striving for uninterrupted service 365 days a year, around
the clock. This relentless pursuit of uptime is seamlessly supported by advanced monitoring
tools that perpetually capture an array of metrics and log data from operational machinery.
Such rigorous data acquisition culminates in generating voluminous datasets rich with intri-
cate details about machine performance metrics and operational dynamics. This scenario is
emblematic of the big data paradigm, characterized by its substantial volume and complex-
ity. It poses formidable challenges in data analysis due to the overwhelming scale of the
datasets involved. The sheer quantity of data collected in a single day can easily surpass the
analytical capabilities of individuals, thereby necessitating the adoption of automated tools
and methodologies for efficient data management and interpretation.
The narrative thus shifts towards exploring established techniques aimed at the analysis and
definitive answer to metric data. Given its predominantly numerical nature, devoid of con-
textual cues, handled as a black box, the endeavor is to distill valuable insights from these
data. The objective involves forecasting computer performance metrics. Giving a basis as
the foundational bricks to build upon can hopefully help transcend beyond traditional indi-
cators such as the “red lamp” indicator.

Moreover, the diverse nature of metric data introduces complexity in discerning correla-
tions among various metrics. These metrics are influenced by the alignment of hardware
components, which varies according to the specific workload and objectives intended. This
aspect of the research delves into the analytical challenges posed by the heterogeneity of
metric data, aiming to unravel patterns and relationships that could inform more effective
and predictive management strategies for the industrial data center. By exploring tools to
find valuable insights to help understand the contextual information of metrics of value.
This study uses real, never-before-seen industry data and strives for answers.

1.1 Project Aim

This study represents a pioneering case study in collaboration with Ericsson Research, fo-
cusing on the practical application of predictive analytics within IT operations. By leverag-
ing Zabbix-collected metric data, the aim is to address the underutilization of vast datasets
in predicting future trends and behaviors. In partnership with Ericsson Research in Lund,
this project delves into the untapped potential of metric data, investigating its utility and
the extent to which it can be leveraged for predictive analytics. The impetus for this study
stems from the current predicament where an overwhelming amount of collected data re-
mains largely unanalyzed. This scenario presents a significant opportunity to sift through
this data for valuable insights and ascertain the feasibility of employing predictive analytics
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to forecast future trends or behaviors based on this data. This research employs established
analytical tools to assess the quality and predictive utility of metric data, to enhance opera-
tional decision-making processes in a real-world industrial context.

This endeavor is envisioned as an industrial case study, utilizing actual data from Ericsson
Research to conduct a comprehensive analysis. The project aims to uncover the potential of
metric data in forecasting future trends, identifying patterns, and contributing to decision-
making processes through predictive insights. Identifying which metrics have the most
significant impact and how they can eventually be utilized in predictive models is crucial.
The project is structured around critical inquiries concerning the insights and relevance of
the metric data. The following research questions lead the project:

• To what extent can metric data inform predictive behaviors, and what value does it
have?

• Which specific metrics are most valuable for predictive analysis from the collected
data?

The aims of this project serve as guidelines to systematically address these research ques-
tions. By structuring the study around these aims, the project ensures a thorough exploration
of the data, leading to actionable insights and practical applications within the context of
IT operations at Ericsson Research. The collaboration with Ericsson Research provides a
unique opportunity to explore these questions within a real-world context, leveraging ac-
tual data to validate findings and recommendations. Through this study, the project aspires
to contribute valuable insights into the effective use of metric data in predictive analytics,
offering potential strategies for Ericsson Research to enhance their forecasting capabilities.
To methodologically give answers to the research questions, they are split into the following
three aims:

Aim 1 Assess the quality and predictive suitability of Zabbix-collected metric data.

Aim 2 Assess predictive capabilities with well-established industry analytical techniques
for predictive feasibility.

Aim 3 Develop and validate an inference model using identified metrics and methods.

1.2 Time plan

The project has an outlining time plan that is used to keep up with achieving work til dead-
lines; see Figure 1.
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Figure 1: Gantt chart showing the project time plan.
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1.3 Risk Register

In the case of this project, some risks are identified; see Figure 2 for included risk mitiga-
tions.

Figure 2: Explaining the risk and mitigations during the course of the project.
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2 Background

This section covers the background knowledge and definitions useful for understanding the
project’s specifics and definitions.

2.1 Data Center

Different cloud data centers exist, ranging from public to hybrid and private. They store
information to help run several companies’ businesses. However, they can generally be seen
as physical buildings that house IT infrastructure for running and developing applications
or services. As data centers house servers and services, they can be used by companies
and private persons since they also need effective management[15]. The data center holds
different machines known as hosts. They can be utilized by several persons operating with
different workloads. As people do not have the same tasks at Ericsson, these hosts create a
heterogeneity of metrics in activity. The data center is also shared by people worldwide that
operate on the servers.

Metrics are a form of quantitative measurement that can help affect a company’s decision-
making [8]. The metric in the context of this study is computer performance metrics. The
metrics are then measurements of the usage of, e.g., CPU utilization. Zabbix is a software
for monitoring the infrastructure by collecting said metrics [45]. Ericsson Research has
used the tool to collect several months of data on their servers, measuring their performance
every minute, illustrated in Figure 3.

There are some considerations to be had when looking at the different types of metrics. The
metric type that this study analyses is computer performance metrics; a good or significant
metric would have to be interesting and show the history of the cases being looked into.
The metric needs to be reliable for prediction. There can also be five ways of considering
the characteristics of a good one: i) does the metric hold relevance for the context of the
situation, ii) can the metric being measured, iii) is the metric actionable, iv) is the metric
robust and v) is it readable [29]?
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Figure 3: How the data center dynamic works between hosts. Hosts are within the data
center, and the Zabbix monitoring tool collects the metrics.

2.2 Artificial Intelligence

Artificial Intelligence (AI) is the simulation of human intelligence in machines programmed
to think and learn like humans. It encompasses various subfields, including machine learn-
ing, where algorithms improve through experience, and deep learning, which involves neu-
ral networks with many layers. AI applications range from natural language processing
to autonomous vehicles, significantly impacting various industries by enhancing efficiency
and enabling new capabilities[16].

2.3 Big Data and Big Data Analytics

Big data is typically characterized by three main components: volume, velocity, and variety.
Volume refers to the sheer amount of data within a dataset. Velocity denotes the speed at
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which data is received and processed. Variety pertains to the diverse types and sources
of data, highlighting its unpredictability. In recent years, two additional ’Vs’ have been
recognized: value and veracity. Value addresses the intrinsic worth of data once its purpose
is identified, while veracity relates to the accuracy and trustworthiness of the data. Big data
encompasses vast datasets that can be either heterogeneous or homogeneous in nature [30].

Analyzing big data involves employing advanced techniques to manage these extensive,
varied datasets. Due to their size and complexity, these datasets require processing by mod-
ern technologies such as AI. The goal of big data analytics is to improve modeling, predict
future trends, and facilitate more intelligent and rapid decision-making [13]. Predictive an-
alytics, a subfield of advanced analytics, uses historical data to forecast future outcomes.
This approach is highly valuable for strategic decision-making across various industries,
from marketing and sales to IT.

A specific application of this is Artificial Intelligence for IT Operations (AIOps), which
leverages AI to automate and streamline IT service management and operational workflows.
By training on big data and utilizing machine learning, AIOps enables IT teams to respond
more swiftly to downtimes and shutdowns, allowing them to act proactively [17].

2.4 Machine learning

As mentioned earlier, Machine Learning (ML) is a subfield of Artificial Intelligence that
aims to imitate the human way of learning algorithms and data to improve the accuracy
of the machine. It is generally used to create predictions or classifications based on input
data, which can be labeled or unlabeled. Labeled data is data that has been previously
classified or characterized. Estimations are created based on the data and previous data
points. It is a model that is usually trained with previous data and then estimates[18]. There
are two basic approaches to AI in the industry: unsupervised and supervised learning. The
difference is that unlabeled data is used for unsupervised learning, while labeled data is
used for supervised learning. The supervised approach guides the algorithm in predicting
outcomes and classifying data by inputs and outputs, making learning more useful over
time. The unsupervised way discovers hidden patterns in the data with the algorithm, which
requires no human intervention or guidance for getting an outcome [14].

A commonly used Machine Learning algorithm is Random Forest[19]. By combining sev-
eral decision trees, an output is given. The algorithm asks itself questions such as “Should
I...?” before it arrives at a final decision known as a leaf. Three main hyperparameters
are set before training: host size, number of trees, and number of features sampled. By
configuring these parameters, the random forest model can give vastly different results. Re-
gression algorithms[41] are used to make predictions based on historical data points. The
same principle can be applied with Random Forest, a Random Forest Regression algorithm,
to solve various regression problems.

2.5 Correlation Analysis and PCA

Correlation analysis involves examining the relationships between variables to determine
how closely connected they are. This project uses correlation analysis to identify patterns



8(62)

and draw conclusions about data characteristics. It quantifies the extent to which two vari-
ables change in relation to each other.

Within this project’s scope, correlation analysis is applied to understand the relationships
within the metrics themselves. Two main statistical methods are used: the Autocorrela-
tion Function (ACF) and the Partial Autocorrelation Function (PACF). ACF is a time-based
function that defines the relationship between data points in a time series, assessing the sim-
ilarity or correlation between these points at different times, known as lags. It quantifies the
relationship between a variable’s current and past values, considering the intermediate lags
for the lag being analyzed [28]. On the other hand, PACF also examines the relationship be-
tween data points in a time series but removes the effect of intervening observations. PACF
specifically measures the direct correlation between observations at a given lag without the
influence of shorter lags, meaning that, for example, lag three indicates a direct correlation
of three lag units [34].

Principal Component Analysis (PCA) is a linear dimensionality reduction technique. It
is used for dimensionality reduction in high-dimensional datasets. It performs orthogonal
transformation between variables, treating them as independent to develop new components.
These components create new patterns based on the variance retained within the data, which
gives great insights for feature selection to identify potential correlations. PCA helps reduce
noise in data and is a useful technique used in the exploration of data where underlying data
patterns may not be clear. Features with high variance are often important within a dataset.
Implementing PCA in complex datasets can also reduce overfitting in machine learning
models, ensuring the model does not only predict one type of data [12].

2.6 Frameworks and Tools

Pandas is a well-known Python library that offers numerous functions for managing large
datasets. It provides a fast and efficient way to process and perform various operations on
vast amounts of data, making it an industrial standard for data analysis [32]. Pandas is
often used alongside Matplotlib, another popular Python library, which serves as a powerful
visualization tool. Matplotlib enables the creation of a wide range of visualizations, from
static charts to animated graphs, helping to effectively present data findings and enhance the
understanding of underlying data patterns [26].

Scikit-learn is a popular and versatile machine-learning library for Python, widely utilized
in academic research, prototyping, and production. It offers simple and efficient data min-
ing and analysis tools, built on top of NumPy, SciPy, and Matplotlib. Scikit-learn includes a
variety of machine learning algorithms, such as Random Forest, making it a comprehensive
tool for various ML tasks. It also holds the function to perform PCA[33]. Additionally,
Statsmodels is a Python library that provides statistical classes and functions. It is exten-
sively used for data exploration, statistical testing, and validation. This project employs
Statsmodels to apply ACF and PACF to the metric data [40].
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3 Related Work

For data exploration, there are common approaches to handling it; preprocessing a big part
is getting familiar with the data before modifying it. Handling duplicates and, removing null
values, understanding the data type, it is important to have good data quality[24][36]. There
is also a good advantage of being able to verify with the human eye through visualization
of how the data is. Clarifying any mistakes or discovering patterns through human intuition
might give huge insights into the data. It is a reason that even though there are a lot of
automated frameworks, visual tools still exist [37].

Given the importance of assuring quality within the data used for data analysis [2], [38]
given that poor data can hurt ML models. A survey found by comparing different data
quality tools that [3] sets a baseline for judging the quality of the data. There is also the
study[43] that explores different predictive performance metrics with a black-box approach.
This study also has environment mapping, which collects a relation between the application
and the computer resources to better understand the demand and overhead placed. High-
lighting the effectiveness of non-intrusive, data-driven methods for predicting performance
metrics. The study also highlights data-driven insights, where understanding past data gives
leverage for more informed decision-making. This finding is also supported by previous
studies when using data for predictions [22], [27], which states the importance of historical
data for improving predictions.

Furthermore, studies like [10], show that a higher resolution can improve simulation accu-
racy, which suggests a better forecasting ability. Even more, the study on temporal reso-
lutions [5] would suggest that a higher temporal resolution does yield better accuracy but
not marginally depending on the domain of the prediction. The domains of the studies are
different but also suggest that a more optimal temporal resolution for the domain can yield
better predictions.

As this thesis assumes that a general model of prediction cannot be applied between het-
erogeneous hosts, there is the study [39] that also suggests greater accuracy in time-series
data can be achieved by building separate models per unique user, that in this context trans-
lates to each host. As the metric data was collected, there is no previous knowledge of the
correlations between the high dimensions. There is a need to tell what variables might hold
greater importance. For machine learning models, studies such as [1] introduce the need
for variable selection techniques that are less computationally expensive. The importance
of the feature selection for improving the model is also suggested in [7], to the point that
the correction variables can even improve performance when trained on sets with missing
data [11].

The mentioned reports serve as a baseline for creating a solution. This study focuses on
previously unstudied data collected by Zabbix. The thesis addresses the research gap of
underutilized datasets at Ericsson Research for predictive analytics, enhancing operational
decision-making in real-world industrial contexts.
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4 Solution design

This chapter presents the solution design for the aims by explaining the tech framework and
statistical tools and setting up a high-level architecture. Each set aim has two objectives as
well as the theory framework to get results. As detailed in Section 1.1, the aims and objec-
tives serve as essential navigational tools that direct the research efforts toward answering
the research questions, ensuring that all aims are aligned with these fundamental inquiries.
The unsolved challenges with this project are the ones that Ericsson Research has yet to ex-
plore: the uncertainty of the data, whether it can be used for prediction, and if these criteria
are filled, test it with a simple inference model. The importance of each step is motivated
by the related works in Chapter 3.

4.1 Tools and dataset

The data analysis uses the Ericsson Research data portal, which also provides Jupyter Note-
book 1, a web-based development service. Through this portal, the datasets can be accessed
from anywhere but have the consequence of not keeping the data locally, where interrupts
and limitations such as speed limitations with on-demand interaction with certain files. The
Jupyter Notebook is a highly flexible platform for installing valuable frameworks and li-
braries to help with analysis. Pandas and Matplotlib make data easier to analyze and visual-
ize, essential for all thesis aims to answer the Research Questions, see Section 1.1. Ericsson
Research provides voluminous datasets containing months of data collected every minute by
the Zabbix monitoring tool for each machine. The data collected are computer performance
metrics.

4.2 The preprocessing of data

The initial step involves thoroughly processing and exploring the data, which includes un-
derstanding the metrics collected and their implications as defined by Zabbix documenta-
tion [44]. The data has never been thoroughly analyzed, so administering any analysis or
description of the metrics gives insights into the nature. The problem is whether there are
limitations to the metrics and whether the datasets collected are of quality. Therefore the
objectives are as follows for Aim 1:

Objective 1.1 Evaluate the completeness, accuracy, timeliness, and consistency of metric
data collected by Zabbix, analyzing its suitability for use in predictive modeling within an
industrial setting.

1https://jupyter.org/
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Objective 1.2 Identify and quantify the limitations and challenges in the data, such as
missing values and noise levels, that may impact the effectiveness of the data set.

The study follows the four most common and generally accepted Metrics to assess the data
quality. This also follows the International Organization for Standardization (ISO)2, for
Data Quality Model ISO/IEC 225012:2008 [20].

Accuracy is for measuring the magnitude of the error the data holds, calculated as follows:

Accuracy =
Number of Correct Data Entries
Total Number of Data Entries

(4.1)

Completeness is the measurement, and this study’s approach follows the Heinrich approach
of counting true values [9]. This is calculated as follows:

Completeness =
Number of Non-Null Data Entries

Total Number of Data Entries
(4.2)

Consistency is the measurement of the data integrity, which speaks for the data’s reliability.
In turn, the question is, does the data adhere to the same constraints between all hosts? This
has to be a manual formulation of the original equation, which makes it more complicated
and would measure up to a few things. Do all hosts capture metrics the same way? Do they
all have the same ranges of data, and do they collect data at the same intervals? Consistency
is calculated as follows:

Consistency =
Number of Consistent Data Entries

Total Number of Data Entries
(4.3)

Timeliness is the measurement of the relevance of the data to the task at hand. Data has a
timeline for use, which creates a decline in value. This is calculated as follows:

QTime
ω (t) := exp(−decline(A) · t) (4.4)

In this context, ω is the considered attribute value, and decline(A) is the decline rate, which
specifies the average number of attributes that become outdated within the time period t.
This is calculated in compliance with a manual inspection of the data in combination with
Ericsson Research domain knowledge, using the Pandas tool to clean up the data and search
for patterns within the data from the manual inspection. This is supported by the use of
Matplotlib for visual graphs.

The success of this aim would be that the data is ensured to be viable and data quality is
assured. The metrics have variability, value, and relevance in history.

4.3 Evaluation of patterns and predictive strength

This is the second step to evaluating the integrity of the metrics for predictive capabilities.
From the work set in Chapter 3, a correlation can be seen between having good feature
selection for improving ML models. While this is true, strong historical data and data from
the right temporal resolution can also help boost the forecast. The answer that lies in the
data is answered using statistical methods. The objectives to verify this for Aim 2:

2https://www.iso.org/home.html
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Objective 2.1 Investigate the data with underlying patterns and strength in feature corre-
lation, assessing their influence on model efficiency and accuracy.

Objective 2.2 Analyze the efficacy of important metrics statistical tools in revealing tem-
poral dependencies and their predictive power within the context of Zabbix metrics.

The use of PCA as a feature selection tool has many advantages. The reduced dimension-
ality helps mitigate overfitting a model. In keeping the original data’s patterns and trends
[25]. This makes it highly suitable for high-dimensional metric datasets. This makes it one
of the most useful tools when training Machine Learning models as it is a slow process; it
helps reduce the training data for faster models [23]. An advantage PCA contributes is that
the information of the data still remains in the principal components with the most variance,
even through dimensionality reduction. A beneficial way of maintaining historical accu-
racy while restraining dimensionality size. However, the cost can come with increased error
rates. PCA can interpret the principal components’ output with the original features, mak-
ing it easier to see what features contribute the most variance to the global data structure;
these give insights into what features influence the data. Standard scaling is recommended
when comparing several features; PCA becomes highly sensitive data with higher variance
when not relative to the same scale.

To find the most important features, ML techniques such as the Random Forest algorithm
are employed further to select strongly correlated features within the complex dataset. The
Random Forest algorithm, specifically the Random Forest Regression 3, is utilized in combi-
nation with a feature selection method called SelectFromModel, both of which are provided
by the Scikit-learn library 4. SelectFromModel identifies features that contribute signifi-
cantly to the model’s predictive performance by selecting those that lead to the purest leaves
and improve decision-making in predictions. They have proven that Random Forest can be
useful for regression problems and feature selection and is not sensitive to outliers or noisier
data while still performing well [21]. This highly motivates the tool’s usage as the metric
data is prone to vary.

The statistical method is ACF, used to find strength in historical data and determine the best
temporal resolution for better predictive capabilities. It has shown to be useful for judging
historical data and its strength in prediction[42]. Therefore, it can be used to predict what
metrics have a strong historical background and might be more suitable for prediction. It
can also be used to see in what lag it finds the strongest cycles. Comparing hours and days
is useful to see if it can find correlations towards itself in the metrics and in what time unit
it finds the strongest lags. Combining this with a similar algorithm, PACF, nuances the
findings and correlation and motivates stronger evaluations. While ACF considers the total
correlation between an observation and its lag, PACF isolates the correlation contributed
by the lag itself, excluding contributions from intermediate lags. They have also been em-
ployed to help strengthen neural network models for univariate time-series forecasting [6].
By applying a 95% confidence interval to the output lags, it can filter and identify the statis-
tically significant lags, assuming they are important. This means that only the lags outside
the confidence interval are considered significant and thus likely to contribute meaningful
information to our analysis.

3https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
4https://scikit-learn.org/stable/modules/feature selection.html
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If the data consistently reveals underlying patterns, rendering it optimal for feature selec-
tion, and if the metrics display robust historical data points conducive to forecasting, all
complemented by a temporal resolution that enhances predictive effectiveness, then this
would fulfill the criteria for success for the second aim.

4.4 Model creation based on previous successes

This section of the solution is based on evaluating and testing the metrics’ efficacy for
inference modeling. Therefore, a simple inference model and an evaluation of it can help.
These are the two objectives for Aim 3:

Objective 3.1 Construct a baseline inference model utilizing the most predictive features
and temporal patterns identified through Aim 2 analyses.

Objective 3.2 Test the performance of the inference model against real industrial metrics
to assess its accuracy and reliability, comparing metrics

The baseline inference model is used to judge at an early phase to what degree metrics can
be predicted, which is used in combination with the features selected from the mentioned
statistical tools in Section 4.3. The model is created using Random Forest Regression and
evaluated using the mean square error for the data model to evaluate accuracy. This is done
on a high level, where few to no modifications are not done. It is used as more contextual
data to draw conclusions based on the existing metrics. The model utilizes the most useful
features determined through previous evaluations in Section 4.3. A generally recommended
amount of trees (trees are decision trees using different random data subsets to make pre-
dictions, and their combined output improves accuracy) is around 100[4][35] for a baseline
prediction, and increasing the number of trees does not result in better accuracy [31]. Too
many trees can result in overfitting or become marginal in accuracy.

Success for aim three would be any type of answer possible. Findings that show metrics
used as variables in feature selection to predict other metrics can show predictions to any
degree. This means correct or even non-correct predictions yield answers. This, in turn,
means using error detection to test the accuracy of the predictions.

4.5 High level architecture

For the aims explained on a high level, see Figure 4.
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Figure 4: An overview of the aims on a high level.
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5 Methodology

This chapter explains the proposed methodology and how to use the theories and solutions
explained in Chapter 4. It navigates putting the solution to the methodology for each aim,
as they seek to answer the research questions formulated in Section 1.1.

The first aim is to look through the data to establish ranges and units of the metrics. This
is done with Jupyter Notebook, by building pipelines and applying similar preprocessing
methods, clearing values and evaluating them between hosts. To find the definitions of
the collected data, the metrics are compared with official Zabbix documentation1. This is
combined with assessing the data quality of the whole data, as per the equations mentioned;
see Section 4.2. The equations of Timeliness (4.4), Completeness (4.2) and Accuracy (4.1)
remains the same. The equation for Consistency (4.3) is adapted for three measurements:
the consistency of units, metrics (ones all hosts share), and time of collection between hosts.

The data quality then follows pursuit in exploration to find continuous data to create a
dataset that is as close to 100% in data quality for analysis. The exploration of the datasets
is done mainly by using the tool Pandas to explore the datasets and using Matplotlib to
visualize the metrics, i.e., using line plots, scatter plots, and diagrams to see and understand
the structure of the data. After understanding what is within the different columns and what
is connected, cleaning up the data would be necessary. Looking at the different plots, trying
to establish any patterns that might be obvious. This is in combination with exploring the
data and establishing if there are more valuable periods where continuous data exists; this,
in turn, can give better results and support for the statistical methods used after establishing
a continuous time period. The data cleaning mainly removes metrics that were not collected.
The outliers were also not removed, as they are argued to show eventual patterns or trends
of the user workload.

All the following methods are applied to an established continuous data quality-assessed
dataset from the results obtained through the data exploration. From the Statsmodels mod-
ule, ACF and PACF are the statistical methods used to judge historical strength in data.
Random forest regression (with SelectFromModel) from the SciKit library is used to judge
the best feature selection with machine learning. PCA is applied to see variance, give further
insight into the underlying patterns, and reduce noise. It is from the SciKit library.

The results are then printed and compared to see what period of time offers the most sig-
nificant trends and cycles for each metric. The visual plots and assumptions are evaluated,
which can help feature engineer new columns used for the prediction model and more con-
textual data. The results are then evaluated manually, which helps provide insight for a
simple ML model. The best features picked out are used to predict a single variable. The
Random Forest Regression model is trained in 100 iterations and then tested against real
data. The model is then trained on the established dataset with the longest continuous pe-
riod; it is also tested with the shorter time periods found but has around one week of data.

1https://www.zabbix.com/integrations/linux
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6 Implementation

This chapter aims to explain the setup of the Solution Design in Chapter 4 in practicality.
Everything is implemented using Python inside Jupyter Notebook. For the tools used, see
Section 2.6.

For the computation of Completeness in Equation (4.2), see Figure 5.

1 # For counting the completeness of data frames
2 import pandas as pd
3

4 missing_value_per_host = []
5

6 for df in host_dataframes:
7

8 # Calculate the total number of entries in the data
frame↪→

9 total_cells = df.size
10

11 # Count the number of missing values across the entire
DataFrame↪→

12 missing_values_count = df.isnull().sum().sum()
13

14 # Count the number of zeros in the DataFrame
15 zero_values_count = (df == 0).sum().sum()
16

17 # Calculate the total missing value in percentage
18 total_missing = (( missing_values_count + zero_values_count ) /

total_cells) * 100↪→

19

20 missing_value_per_host.append(total_missing)
21

22 print("Total:", sum(missing_value_per_host) /
len(missing_value_per_host))↪→

Figure 5: This code is used to compute the completeness of each dataset within each host.

For the computation of Timeliness in Equation (4.4), see Figure 6.
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1 # For counting the timeliness in data frame
2

3 import pandas as pd
4 import numpy as np
5 from datetime import datetime
6

7 # Sample DataFrame

8 data = {
9 'timestamp': ['Time of data frame']

10 }
11 df = pd.DataFrame(data)
12 df['timestamp'] = pd.to_datetime(df['timestamp'])
13

14 # Define the date of today

15 today = datetime.now()
16

17 # Calculate the age of the data in days
18 df['data_age'] = (today - df['timestamp']).dt.days
19

20 # Define the decline rate
21 decline_rate = 0.0

22

23 # Calculate the timeliness using the given formula
24 df['timeliness'] = np.exp(-decline_rate * df['data_age'])
25

26 # Display the resulting DataFrame
27 print(df)

Figure 6: This code is performed on each dataset for each host to compute timeliness.

The consistency between metrics caused a problem when computing as the metrics are
highly varied between the hosts, as seen in Appendix A.1. This meant creating a core set of
metrics that a host had to have, and the consistency of metrics was calculated with those in
mind. The equation of Consistency (4.3) was modified to the following:

Metric Consistency =
hosts with Metric Collection∩Core Metrics

Total amount of hosts
(6.1)

For the computation of the modified Consistency of metrics in Equation (6.1), see Figure 7.



18(62)

1 # metrics collected by host / core set of metrics chosen =
1↪→

2

3 def calculate_coverage(comparing_list):
4 # Convert lists to sets
5 reference_set = set(list_of_core_metrics)
6 comparing_set = set(comparing_list)
7

8 # Calculate intersection
9 intersection = reference_set.intersection(comparing_set)

10

11 # Calculate coverage proportion
12 if not reference_set:
13 return 100 # If the reference list is empty, return

100\% coverage by default↪→

14 coverage_ratio = len(intersection) / len(reference_set)
15

16 # Convert to percentage
17 coverage_percentage = coverage_ratio * 100
18

19 return coverage_percentage
20

21 core_hosts = []
22 # for df in host_dataframes:
23

24 # Get the hosts metrics
25 metrics = df.columns
26

27 coverage = calculate_coverage(metrics, list_of_core_metrics)
28 # Compare it to core set of Metrics

29 if coverage == 100:
30 core_hosts.append(df['host'])
31 else:
32 print("Host does not fit the standard!")
33

34 print("Metric consistency:", len(core_hosts) / len(host_dataframes))

Figure 7: This code is performed on each dataset to compute the metric consistency for
each host.

The time difference in the metric collection was also slightly varied between the hosts. This
caused a new equation to be created for time inconsistency, based on the statistical formula
for Coefficient of Variation 1. This tells the story of the general variation in the collection
between the hosts. For the computation of the Consistency in time collection, see Figure 8.

1https://en.wikipedia.org/wiki/Coefficient of variation
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1 # Convert 'clock' to a datetime format if necessary
2 df['clock'] = pd.to_datetime(df['clock'], unit='s') # Assuming

'clock' is in seconds since epoch↪→

3

4 # Sort by 'hostid' and 'clock' to ensure the order
5 df = df.sort_values(by=['host', 'clock'])

6

7 # Calculate differences in 'clock' for each host
8 df['time_diff'] = df.groupby('host')['clock'].diff()

9

10 # Check variability in time differences for each host
11 time_diff_variability = df.groupby('host')['time_diff'].nunique()

12

13 # Calculate the mean
14 mean_metrics = np.mean(time_diff_variability)

15

16 # Calculate the variance
17 variance_metrics = np.var(time_diff_variability)

18

19 # Calculate the standard deviation
20 std_dev_metrics = np.sqrt(variance_metrics)

21

22 # Calculate coefficient of variation
23 co_of_var = (std_dev_metrics / mean_metrics) * 100

24

25 print(f"Coefficient of Variation of metrics collected:
{co_of_var}\%")↪→

Figure 8: This code is performed on each dataset to compute the time-varied consistency
for each host.
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For the application of ACF and PACF, using the Statsmodel and adding the significant lags
to the existing datasets, see Figure 9.

1 def calculate_acf_pacf_features(series, nlags=10, alpha=0.05):
2 acf_values, confint_acf = acf(series, nlags=nlags, alpha=alpha,

fft=True)↪→

3 pacf_values, confint_pacf = pacf(series, nlags=nlags,
alpha=alpha)↪→

4

5 # Filter acf and pacf values based on confidence
intervals↪→

6 acf_values = np.where((abs(acf_values) >= confint_acf[:, 1]),
acf_values, 0)↪→

7 pacf_values = np.where((abs(pacf_values) >= confint_pacf[:, 1]),
pacf_values, 0)↪→

8

9 return acf_values, pacf_values
10

11 def add_lag_features(df, metric, nlags=10):
12 if metric not in df.columns or df[metric].dropna().empty:
13 print(f"No data available for metric {metric} after

preprocessing.")↪→

14 return df # Return the original DataFrame or handle
the case appropriately↪→

15 if df[metric].var() == 0:
16 print("Variance is zero, which may cause computation

issues.")↪→

17 return df, None # or handle as needed
18

19 acf_values, pacf_values = calculate_acf_pacf_features(df[metric],
nlags=nlags)↪→

20 new_columns = {}
21 for i in range(1, nlags + 1):
22 new_columns[f'{metric}_acf_lag{i}'] = df[metric].shift(i) *

acf_values[i]↪→

23 new_columns[f'{metric}_pacf_lag{i}'] = df[metric].shift(i) *
pacf_values[i]↪→

24 new_columns_df = pd.DataFrame(new_columns, index=df.index)
25 df = pd.concat([df, new_columns_df], axis=1)
26 df.dropna(inplace=True) # Drop rows with NaN values

resulted from lagging↪→

27

28 return df

Figure 9: The code that was used to apply ACF and PACF functions from the Statsmodels
module and the addition of the lagged features to the existing datasets.
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7 Results

This chapter aims to showcase the results for the Aims that were set, to answer the research
questions in Section 1.1. The data exploration yielded a few answers before making quality
measurements on it. There are two timelines for the data: one before restructuring the hosts
to collect more data per time unit and one before that. This split of file structure happened
in the summer of 2023; the main difference is that the file sizes are much larger. These
results are based on the time before data inflation, as it was seen as more manageable to
handle. The constraint of the data is the same, the hardware collected is the same, and the
collected metrics are the same. One hour of data after the split held almost as much data
as one complete day before the split, which causes issues when seeking to handle connect
several files to create a continuous dataset; a con of working from a distance as mentioned
earlier in Section 4.1. There could be reasons to look into the latter versions in more detail
to see if the results are marginally different. In agreement with Ericsson Research, only the
earlier part of the data is explored as the collection remains similar. The timeliness remains
the same.

To clarify, no outliers were removed from the data, as during the exploration phase, it be-
came clear that it was not evenly distributed, see Appendix A.3. The aim is to assess the
data around the clock. Since the data center is used by people in different time zones, there
are no standard business hours to look at directly. However, long periods of inactivity also
exist, creating skewed data distribution, as activity depends on when the servers are manned.
The metrics are skewed and not prone to being distributed normally. Because of this, many
of the outliers detected by normal standard deviation methods also spike activity within
the metric data. Because of time limitations to explore these outliers, they are assumed to
be part of the workloads and not noise, therefore not removed from the data. The explo-
ration is an aggregated version of the original dataset, as data is collected by the minute and
aggregated towards hours and days.

7.1 Aim 1 - Data exploration and preprocessing

Before the preprocessing, the data is assessed and judged in four steps. Accuracy is set to
100% for this sample because it represents real data, meaning every entry is correct accord-
ing to the definition provided in Equation (4.1). This high accuracy is due to the data being
factual and collected from actual machines, ensuring a perfect match between the observed
and expected values. Timeliness during the period would adhere to its relevance; since the
data structure has not changed, the decline rate is nearly zero or exactly zero, resulting in
100.0% timeliness, indicating perfect relevancy. The data itself is only one year old, and as
the machines are said not to have been changed, as well as the method of collecting the data,
they are as relevant as the data being collected today. The time inconsistency was to make
sure that the machines collected at the same time. The inconsistency is reported to be quite
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high based on the coefficient of variation, a well-established method for assessing inconsis-
tency. However, this high value is influenced by a few hosts, as detailed in Appendix A.2.
Comparing the intervals at which data points are collected for each host reveals that, over
the long term, the inconsistency can indeed be significant. Appendix A.1 shows the met-
ric variance between hosts, and Appendix A.2 details the time variance between hosts. The
overall data quality values are presented in Table 1. The hosts vary in the quantity of metrics
collected. Consequently, it was necessary to define a core set of metrics primarily guided by
the hosts with the most extensive data collection. This involved manually identifying and
creating an intersection of these metrics to ensure comprehensive coverage.

Table 1 Data Quality Assessment in %

Completeness Metric Consistency Time Inconsistency Timeliness Accuracy
67.5% 0.15% 87.5% 100.0% 100.0%

Columns that only contained NaN were removed, leaving 33 metrics as seen in Table 2.
There is also the removal of the hosts that were seen as non-significant. They did not match
the criteria for a core set of metrics established; see Table 2, which explains the low value
of the Metric Consistency ratio in Table 1.

Table 2 Metric Cleaning of Non-Significant Metrics

Type of Hosts Number of Hosts Columns
Non-significant 34 hosts 2

Significant 6 hosts 33
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The aim is to create full metric consistency between the hosts and completeness, as the
original dataset had a lot of NaN values filling it. Even with the new dataset with fewer
hosts, it still had to be checked for completeness, and it lacked it. Creating a continuous
dataset needs consistency and completeness, and as seen in Table 3, it contains a lot of time
gaps. The results for the total time gap in the dataset before the split are presented in Table 3.
A significant portion of this gap can be attributed to downtime during the summer months.
This downtime may be due to various factors such as maintenance, reduced operational
activity, or seasonal closures.

Table 3 Summary of Gap Data

Number of Gaps Total Gap Duration (minutes) Total Gap Duration
115 37499.00 624.98
115 37499.00 624.98
116 37574.00 626.23
115 37609.00 626.82
115 37572.00 626.20
100 37346.00 622.43

The data exploration spurred the finding of a continuous time period with minor time gaps
and high data quality. This resulted in finding period with no gaps, creating a time series
of 34 days. The data is consistent between the hosts; they all share the same metrics, are
complete, and share time consistency. For the established dataset qualities, see Table 4. The
total gap duration in the data is omitted; it represents the daily saving of metrics, generating
data gaps every day. Time inconsistency is also omitted for these hosts as the recorded data
is collected simultaneously. Further findings revealed four weeks of continuous data that
met all quality criteria, see Appendix A.8 for metric activity. This uninterrupted dataset is
particularly valuable for testing the predictive model, offering a reliable basis. To confirm
the occurrence of different activities throughout the week, it is assumed that activity levels
are higher during weekdays compared to weekends. A summary of CPU idle time, where
lower values indicate higher activity, can be found in Appendix A.4. This analysis motivated
the decision to focus on periods with high data integrity further. The 34-day dataset was col-
lected to visualize trends, inspect the data, and highlight the differences between weekdays
and weekends. As logically expected, the metrics show more activity during the week than
on weekends. For a detailed comparison of how metrics fluctuate across all hosts at two
different resolutions—one with a limited Y-axis and one without—refer to Appendix A.5.

Table 4 Established dataset
Hosts Completeness Metric consistency Metrics Total Gap Duration (Minutes)

6 100.0% 100.0% 33 0.0

Figure 10 illustrates the difference in activity between hosts, specifically by comparing
CPU Utilization. CPU utilization is a key performance metric for servers in a data center.
It directly measures the computational workload, allowing for the detection of activity on
a computer. Due to its importance in monitoring and managing server performance, the
inconsistency in measurement can be seen in the scales of the activity. The variety in the
data suggests high heterogeneity, further emphasizing the importance of this metric. This
result aims to demonstrate that the same metric for different hosts holds a different scale of
values.
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Figure 10: CPU activity shown between different hosts. The Y axis explains the activity for
the CPU in percentage, and the X axis spans the time period of the established
dataset.

The following figures, Figure 11 and Figure 12 explain the activity of the metrics during the
continuous dataset of 34 days. The first week in the plot starts on a Tuesday. Otherwise,
each date is weekly, starting on a Monday and ending on a Sunday. It is two hosts’ activity,
which is chosen as they hold metrics that contain more activity. The plots are limited in
scale to show most of the metrics, as there are also units counted in quantity. That means
some of the metrics are, i.e., not in percentage, and therefore, the Y axis is scaled much
higher than 100, where it counts the frequency of an occurrence. Some spikes can be seen
very clearly in Figure 11, which is a clear pattern as they are the inverse of each other. These
are the CPU idle time and the metrics for CPU utilization. However, the demonstration of
the plots shows that although the week mostly has more activity, spikes occur even during
the weekends, where the activity follows the week’s trends. Some spikes occur over several
days. For full resolutions over the whole time period with no scale limit, see Appendix A.5.
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Figure 11: This shows all metric activity under the period of the established dataset. The
Y-axis is scaled to 100 to see most metric activities and showcase the value and
activity of the metric. The X-axis is the time period. It is based on Host 2.

Figure 12: This shows all metric activity under the period of the established dataset. The
Y-axis is scaled to 100 to see most metric activities and showcase the value and
activity of the metric. The X-axis is the time period. It is based on Host 6.

Looking at Figure 13 and Figure 14, CPU utilization for the same hosts, when some work
is started, it can spike and influence the activity in following days.
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Figure 13: CPU activity shown between different hosts. The Y axis explains the activity for
the CPU in percentage, and the X axis spans the time period of the established
dataset. It is based on Host 2; it can be seen that once the workload is started,
this metric spans over the next day or days.

Figure 14: CPU activity shown between different hosts. The Y axis explains the activity for
the CPU in percentage, and the X axis spans the time period of the established
dataset. It is based on Host 6; it can be seen that once the workload is started,
this metric spans over the next day or days.

7.2 Aim 2 - Temporal resolutions and Feature selection

The following graphs discuss the important lags and the more relevant temporal resolution.
They summarise the values of using ACF and PACF. The graphs shown summarize all
metrics to show relevancy between all hosts. They also summarize all the values in between
and how many times they were lagged. The 2D graphs explain the number of times they
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were lagged as significantly above a 95% confidence interval. The 3D graphs also explain
the values of each lag on average between the times they were counted, that is the correlation
and strenght that lag contributes. To see the graphs regarding a daily temporal resolution,
See Figure 15 and Figure 16. For the standalone of the 3D graphs, see Appendix A.6.

Figure 15: 3D graphs over PACF (left) and ACF (right) significant metrics, where the Y-
axis is the value of each lag, the X-axis is the corresponding lag, and the Y-axis
is the quantity of the responding metric.

Figure 16: Statistics over PACF (left) and ACF (right) significant metrics, where the Y-axis
explains the quantity of metrics measured as significant and the X-axis explains
at what corresponding lag.

To see the graphs showcasing an hourly temporal resolution, See Figure 15 and Figure 18.
For the isolated plot of the 3D graphs, see Appendix A.7.
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Figure 17: 3D graphs over PACF (left) and ACF (right) significant metrics, where the Y-
axis is the value of each lag, the X-axis is the corresponding lag, and the Z-axis
is the quantity of the responding metric.

Figure 18: Statistics over PACF (left) and ACF (right) significant metrics, where the Y-axis
explains the quantity of metrics measured as significant and the X-axis explains
at what corresponding lag.

The following table shows unique metrics seen as significant, that is, over the 95% confi-
dence interval, see Table 5.

Table 5 Significant Unique Metrics found in each host, hourly resolution

Host Significant PACF metrics Significant ACF metrics
Host 1 24 24
Host 2 23 24
Host 3 21 21
Host 4 24 24
Host 5 24 24
Host 6 26 26
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The following graphs explain the feature selection results and reveal a fingerprint that cre-
ates relevant features between all hosts; see Figure 19. The feature selection is only done
hourly, as the previous results with ACF and PACF showed more information can be gath-
ered on that temporal resolution. The figure mentioned firstly shows correlations averaged
out between all hosts; this means that the values each metric contributes to each unique host
are averaged to showcase if there are strongly correlated values between all hosts. Figure 20
showcases a fingerprint of all relevant features between all hosts, that is, without average,
and is all layered on top of each other without modifications; this is how the fingerprint
would look if the hosts shared metrics that seemed highly correlated.

Figure 19: These are the correlated features between all hosts and their corresponding met-
ric data. It is averaged out to be a relative measurement between all hosts. With-
out a threshold. Not many highly correlated metrics can be seen with all hosts
combined.
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Figure 20: These are the correlated features between all hosts and their metric data. The
plot does not have to be average. It showcases the pattern of all features detected
as relevant between all hosts, added together. It is thresholded with a value of
0.2.

Furthermore, looking at all the individual feature selections in Figure 21. They are also
thresholded with a value of 0.2. The graphs follow the same axis order as Figure 19 and
Figure 20.
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Figure 21: These are the correlated features between all hosts and their metric data. These
show all the host’s individual correlations towards the metric. It is thresholded
with a value of 0.2.
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The dataset comprises 33 metrics, as detailed in Table 2. The ML feature selection (F.S)
has identified that each metric combination is unique to each host. This uniqueness is a key
factor in our analysis. The metrics whose lags were significant have been feature-engineered
(F.E) into the dataset with the help of Machine Learning, which has proven to be a reliable
tool for predictions. This is a result of combining the machine learning feature selection
with the lags seen as significant for each metric with PACF or ACF. The results also change
when adding PCA and ACF lag as a feature-engineered metric and the significant lags to
the ML model, as shown in Table 6.

Table 6 Feature Selection Stats
Unique F.S Metric per host F.E ML ACF/PACF per host Added ACF/PACF metrics

27 37 10
27 34 7
26 34 8
28 34 6
27 35 8
26 54 28

The PCA was performed with 90% variance kept, removing unnecessary noise but keeping
most of the data with integrity. The results from the PCA method to analyze the contribution
of variance and what metrics might seem more important averaged out over all hosts can be
seen in Figure 22. The plot explains what metrics between all hosts contribute to the dataset
in variance, which can help give insight into the more important metrics. The PCA plots can
be interpreted this way; they create their own pattern in each principal component (PC) on
the X-axis. That is how much the metric contributes to the variance of that PC. Since PCA
looks at the dataset as a global structure, it can help give insight into what metrics give the
most variance, which is often correlated to the importance of that metric. Metrics aligned
with each other in each PC can also be correlated if they have a similar variance correlation
(not the absolute value). Each PC has its own orthogonal pattern of variance and does not
correlate with others. There could be cases where one metric pops up in several PCs, which
creates an underlying pattern. They are also thresholded at 0.3, looking at the max value for
each scale as it is relevant to that PCA application; the average mean would be 0.6, which
means that the set threshold gives room for more metrics.
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Figure 22: This shows what metrics contribute the most variance between all host datasets,
that is, for each principal component created. It is thresholded by 0.3.

In Figure 23 shows how they look independently contributing variance.
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Figure 23: This shows what metrics contribute the most variance between all host datasets,
that is, for each principal component created. It is the individual contribution of
variance for each unique Host. They share some similarities. It is thresholded
by 0.3.

Figure 24 explains the metrics relationships between the different methods applied through
the Venn diagram. This shows how they all show different values that might be deemed
important to the dataset. The Feature Selection diagram, however, acts differently. As the
other methods single out one metric at a time, the feature selection needs at least a pair,
inflating the number of metrics and almost always containing a union of all metrics.
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Figure 24: This showcases how many metrics are shared as important between the methods
used to explain the importance and individuality between the hosts. The yellow
circle is the PCA variance thresholded with a value of 0.3. The green circle is
the feature selection thresholded with a value of 0.2. Finally, the blue circle is
a union of the metric with significant lags output with ACF and PACF.
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7.3 Aim 3 - Machine Learning Model Performance

These are the results from the model; a standard deviation plot showcases the values from
both the test data and tested against real data. The prediction experiment is against test and
real data; for metric data activity of the real data, see Appendix A.8. However, to have the
tests fair, they are all performed on the same host (Host 0). The host has no specific reason
for being picked. From earlier figures, it is mostly seen that hosts have high individuality.
For the results, all value predictions under zero in predictions are set as 0 in value to keep
mean values robust. The figures explain how some metrics are easier to predict than others.
All metrics are tested for prediction on the host and the accuracy of their prediction. See
Figure 25 for the test data and Figure 26 for the real data.

Figure 25: A standard deviation model visually showcasing the accuracy of the predictions
made with the model on test data. The Y-axis is used to explain the number of
metrics predicted at what accuracy to the X-axis’s accuracy.
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Figure 26: A standard deviation model visually showcasing the accuracy of the predictions
made with the model on test data. The Y-axis explains the number of metrics
predicted at what accuracy to the X-axis’s accuracy. Every plot represents one
of the weeks from the real data.

PCA is applied to the same model; PCA helps reduce noise after all features are selected,
that is, to reduce dimensionality when variables are already chosen for prediction. The
PCA is applied with the parameter of keeping 90% of the variance to hold the important
information intact. The results are different; See Figure 27 for test data results and Figure 28
for the real data. All results under zero in predictions are set as 0 in value.
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Figure 27: A standard deviation model visually showcasing the accuracy of the predictions
made with the model on test data. The Y-axis is used to explain the number of
metrics predicted at what accuracy to the X-axis’s accuracy. This is with PCA
applied to the dataset.
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Figure 28: A standard deviation model visually showcasing the accuracy of the predictions
made with the model on test data. The Y-axis explains the number of metrics
predicted at what accuracy to the X-axis’s accuracy. Every plot represents one
of the weeks from the real data. This is with PCA applied to the dataset.
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8 Discussion

The innovative nature of this study lies in its practical application of predictive analytics to
a real-world dataset from Ericsson Research. Unlike theoretical research, this case study
demonstrates the tangible benefits and challenges of using Zabbix-collected metric data in
an industrial setting. The methodologies employed, such as feature selection and temporal
resolution analysis, are tailored to address the specific needs and constraints of the com-
pany, providing actionable insights that can be directly implemented to improve operational
efficiency.

Starting from the first point, this study addresses the research questions in Section 1.1, by
formulating specific Aims and objectives to navigate the broad field of metric data analysis.
The first research question—”What metrics from the data center can be used for forecast-
ing, and which metrics hold value and relevance?”—is addressed through all three aims.
Aim 1 seeks to filter out unnecessary metrics and retain those of quality. Aim 2 evaluates
these metrics’ predictive suitability and behavior, determining their value for forecasting.
Aim 3 examines the practical application of these findings and explores additional insights.
The second research question—”Which specific metrics are most valuable for predictive
analysis from the collected data?”—is tackled by using Aim 1 to eliminate preliminarily
useless metrics and ensure data quality, Aim 2 to assess useful metrics for feature selection
and relevance, and Aim 3 to test the practicality of these metrics with a simple model. By
structuring the aims as a guideline, the study discusses the results of each aim in detail,
ultimately answering the research questions rather than merely fulfilling the aims

Moving on to the first results, the aim is to assess the data quality and answer what metrics
are redundant. In Table 1, the time inconsistency was given too much focus. As it varies
to some degree between hosts, it is still collected at a similar interval at the machine’s local
time. The completeness and metric consistency in Table 1, was not expected. The time
gaps are consistent between hosts, which is assumed to be a general downtime in the data
center, although this could not be confirmed. To have as much integrity as possible to the
data without performing imputations or artificially manipulating the data, this gave a much
lower continuous dataset than assumed. It is 34 days of continuous data without downtime,
other than the consistent time gap at the end of each day, assumed to be for some data
cleanup, but again, not confirmable, which in turn created the established dataset seen in
Table 4.

Interesting patterns were also seen during the data exploration. CPU utilization is often a
metric that shows activity performed on a computer, as modern computers all use the CPU
to perform any activity or calculation. In Figure 10, it can be seen that the metrics vary a
lot; now, this is not the same for every metric, as some had too little variety and predictable
patterns, which make them less interesting. The results show that the spikes are not as cyclic
on a first look or have obvious seasonality. The spikes are sporadic, mostly host-dependent,
and even for CPU utilization metrics; some have very low variance and seem more static.
This would presume high individuality and no general assumption can be made about the
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general metrics for all hosts.

It was also assumed that the weeks should have more activity or the metrics should be higher
in value. This is not always the case; generally, there seems to be more activity, but they do
not always differ much if looking at week 4 in Figure 12. However, on exploring this case,
a lot of metric activity seems to spread into the next day, even onto the weekends, i.e., if
work is performed on a Friday, it continues on Saturday, which is seen in both Figure 12 and
Figure 14. This could be because of the different time zones or processes left running for a
while. Looking at it from a higher resolution, it could be assumed that sometimes processes
are kept running longer, as seen in Figure 10. Now, this does fulfill the criteria that metrics
from the exploration phase hold variety and are quite individual; a continuous time-series
dataset qualifies for further exploring, which fulfills success for Aim 1, see Section 4.2.
It also clears up the Research Questions in Section 1.1; there are metrics with continuous
history and variety. This means they do not always act the same and have a reason to be
predicted.

The second part of the results is for determining the importance of some features and the
strength they hold for predictions, which is by using ML feature selection and the statistical
tools ACF and PACF, see Section 4.3. Firstly, the results from the daily resolutions in
Figure 16, a third dimension added to Figure 15. On exploration of the metrics, some
have more predictable patterns, as mentioned earlier; however, as this is still a high-level
exploration, assuming to remove them as of that moment seems too presumptuous. The
graphs indicate fewer significant lags than Figure 18. This suggests a greater benefit of
predicting on an hourly basis than a daily one. However, there is also clearly a falloff in
the quantity for ACF in Figure 16, which suggests that the intermediate values between
the lags do not strengthen the correlation as time passes. The PACF value seems more
significant, which could suggest a bi-weekly trend. As stated earlier, metrics follow the
usage of earlier days, which could mean on a new week, the workflow is changed, which
creates new patterns. Referring to the 3D plot, Figure 15, it can also be seen that the 2D
plots can be misleading, as the values (correlation strength) fall off for most metrics, the
further the lags go. In most cases, it can be seen that on a daily resolution, most metrics
fall off after the third lag, which would follow the manual inspections on most metrics
that seemingly have a 2 or 3-day trend of stronger correlation before falling off. The key
metrics contributing to the underlying patterns remain consistent across daily and hourly
resolutions. Disk I/O, memory utilization, and CPU metrics are crucial at both temporal
granularities.

The difference between the daily and hourly resolution metrics is that significantly more
lags are detected hourly; however, the correlations’ strength is also more detectable. How-
ever, the following trend is that most metrics hold strong historical data on a 24-hour basis.
As seen in PACF, the direct correlations seem weaker, which suggests that the intermediate
values hold strong values to create strong correlations for the next hours. Looking further
into how many unique metrics are detected on each host, see Table 5; there is a similarity
in the number of metrics suggested to be strongly correlated in the time series. The com-
parison shows that hourly resolution data provides stronger and more immediate historical
values detectable through ACF and PACF analysis, making it more effective for short-term
monitoring and rapid response. While useful for long-term trend analysis, daily resolution
data may not capture the finer, immediate fluctuations as effectively as hourly data. The
lags for daily resolution reveal strong immediate dependencies and could indicate weekly
patterns; however, it suggests a weekly cycle or reset. For real applications, combining both
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resolutions would yield the most robust approach to performance management, balancing
real-time responsiveness with long-term planning. This study, however, moved to focus on
the hourly resolution as it held more data.

Moving on to the stats and fingerprints, they are performed on an hourly basis, as seen
with ACF and PACF; there is more historical data there, and when aggregating it to a daily
resolution, information can disappear. Another thing that suggests that it is hard to draw a
general comparison of what metrics are more important is Figure 19. The fingerprint is all
metrics correlations averaged out between them, which suggests about five highly relevant
metrics between hosts. Looking closely at what metrics are correlated to each other, three
of them are redundant as they are variates of their own metric; all Load Averages are part
of CPU Utilization. However, aggregating the CPU utilization to a lower resolution makes
it relevant for prediction. On inspection of the heatmaps individually in Figure 21, it could
also be seen that some hosts share some features while others do not. This means that
when averaging out the values, the machines that hold similar values get flushed out by the
number of other hosts that do not hold that metric value.

Table 6 explains the number of unique metrics picked out per host to be valuable. That
means that out of the 33 metrics, a maximum of 26 metrics were seen as important, which
would reduce the number of metrics needed for predictions with context. However, putting
it into context, if a metric were significant at every lag hourly, it would generate 24 extra
features per metric, which in total for all metrics would be 624 extra features (assuming it
is also the host with max features, 26). For that host, however, only 9 extra features were
added. This is about 1,5% of the capability of the best-case scenario. Looking back at
the research question, Section 1.1, it was hard, even with the statistical analysis, to draw
a complete conclusion from the results. The metrics act highly individual for the hosts,
but it still suggests that some metrics are more important and some hold stronger historical
data. The higher temporal resolution holds more predictability. This falls into the criteria
for success to be defined for Aim 2 in Section 4.3, where patterns, temporal resolution,
and hope of historical data were supposed to be found. In summary, disk I/O and memory
utilization are the most critical factors between the host datasets, with CPU metrics also
playing a significant role.

The same case is for the PCA average heatmap in Figure 22 as the FE heatmap seen in
Figure 19, the metrics become flushed out between the datasets. However, some metrics
stand out more in their variety between all datasets. This dominant pattern could be assumed
to strongly influence the general pattern of the datasets for all hosts. This is the first result
given that is more conclusive between all hosts. However, one must remember that each
PC is an orthogonal pattern not connected to other PCs, which means that for the second
PC, two metrics pop up with a high similarity. They are also shown to be connected to the
disk, which creates a pattern. This is the PC with the second-highest variance in all the
datasets. An important finding is that no metrics can be seen in the first PC, the component
with the highest variance. Looking at the individual plots in Figure 23, only two hosts
contain metrics that correlate with the threshold of 0.3. This could mean that the datasets
are too constrained, but essentially, no metric in the PC that holds the most variance seems to
influence the most among the datasets. The PCA variance analysis underscores the critical
role of disk I/O and memory utilization in influencing system performance. CPU metrics
also play a significant role but contain more variability. Combining the insights from PCA
and feature selection analyses provides a holistic view of the key metrics between hosts.
Disk I/O and memory utilization are the most critical factors for monitoring and optimizing
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system performance. CPU metrics also play a significant role but require a more tailored
approach.

The Venn diagrams in Figure 24, highlight key insights into system performance metrics
across different hosts and analytical methods. Several metrics are consistently identified
by all three methods, underscoring their reliability as critical performance indicators. Each
method also identifies unique metrics, demonstrating the value of a multi-faceted approach
to capture a comprehensive set of influential factors. The variability in unique and common
metrics across hosts suggests that specific configurations and workloads affect which met-
rics are most important, necessitating tailored applications between hosts. Prioritizing met-
rics consistently identified as important across all methods and hosts can yield significant
insights into the underlying pattern. Thus, leveraging the combined strengths of ACF/PACF,
PCA, and Feature Selection provides a robust framework for identifying and optimizing key
system performance drivers, ensuring comprehensive monitoring and tailored optimization
for each host. Clearly connecting to the research question in Section 1.1, when wanting to
answer what specific metrics are more valuable.

For the last Aim with the knowledge and assessment of the previous patterns and metrics
features that seemed strong. An attempt at a simple baseline regression model is made.
No heavy modifications are done to the datasets other than feature engineering significant
lags as they can help the model with more accurate predictions. The previously established
dataset is the one being trained, where the results for the test dataset can be seen in Figure 25.
Now, the mean for the results is not in line with any results from the test, where the majority
of the metrics range from 96% to 99% accuracy, which is usually a sign of overfitting
in the model. A similar pattern can be seen with the results on real data in Figure 26.
The plot is larger because it is tested on four individual weeks of data. These are not the
results one would hope to get, as they are too optimistic, with a few metrics seemingly
unpredictable. However, the frequency of high predictability is concerning and is certainly
a result of overfitting. Another reason for these results could be that some metrics, such as
CPU Utilization, can be very strongly correlated, such as Idle Time, see Figure 20. They
are, per definition, almost the opposite; when one lowers, the other raises; by not removing
this feature to predict the other variable, one could also assume the results would be highly
accurate. Some metrics are more stagnant than others; that is, they perform similarly over
longer periods and do not seem to change their patterns so much, which would contribute to
being a metric that is easy to predict. With these results, one would remove these features
from the difference in results for further testing. However, to connect this to the criteria for
success, see Section 4.4, which is useful information. It was possible to perform predictions.
However, the results might not have been as satisfying as hoped, and the model is most likely
overfitted.

However, applying PCA to this is more reasonable; assumingly, it removes much of the
noise by reducing the dimensionality. It can be seen that the values are more spread out
and not always as accurate, which would be more realistic. It could be better with more
domain expertise in ML and reasonable accuracy. Future research could apply more cross-
validations, as these are simple models only evaluated by accuracy with MSE (Mean Square
Error). A summary of all real results, whether applied with PCA or not, seems to be a wider
division of accurate predictions, where some metrics clearly perform worse when predicting
with real data. It can also be seen that week three generally performs better. Looking at the
activity for the metrics there, it is seen that they are very stagnant. This is probably an easier
prediction and, hence, gives clearer results.
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9 Conclusion

This thesis explored the potential of using computer performance metrics for predictive
analysis within a cloud data center, focusing on data collected by Zabbix in the Ericsson
Research data center. Through a structured approach involving data quality assessment,
feature selection, and model development, the study aimed to answer key research questions
about the utility and value of these metrics.

Aim 1: Assess the quality and predictive suitability of Zabbix-collected metric data.

By addressing the first research question—”What metrics from the data center can be used
for forecasting, and which metrics hold value and relevance?”—the study focused on fil-
tering out unnecessary metrics and retaining those of high quality. The quality assessment
revealed that a core set of metrics with high completeness and relevance could be identified
despite inconsistencies and gaps. This ensured that the data used for further analysis was
robust, fulfilling Aim 1 and confirming that valuable and relevant metrics exist within the
dataset.

Aim 2: Assess predictive capabilities with well-established industry analytical techniques
for predictive feasibility.

To answer the second research question—”Which specific metrics are most valuable for
predictive analysis from the collected data?”—the study employed techniques such as ACF,
PACF, and PCA to evaluate the predictive strength of various metrics. The analysis demon-
strated that certain metrics exhibited strong temporal patterns and correlations, indicating
their suitability for predictive modeling. The individuality of the hosts suggested that mod-
els might need to be tailored to specific hosts to achieve optimal performance. The ex-
ploration found that disk I/O, memory utilization, and CPU metrics consistently played a
significant role. This exploration fulfilled Aim 2, identifying the most valuable metrics for
predictive analysis.

Aim 3: Develop and validate an inference model using identified metrics and methods.

The third aim involved developing and validating a baseline inference model to test the
practical application of Aims 1 and 2 findings. By incorporating the most predictive features
and temporal patterns identified, the model aimed to forecast future trends. The initial
results showed promising accuracy but also indicated potential overfitting. The application
of PCA helped reduce noise and dimensionality, resulting in more realistic accuracy levels.
This addressed the research questions by demonstrating the practical feasibility of using
selected metrics for prediction, fulfilling Aim 3.

This thesis demonstrates the potential of using performance metrics for predictive analysis
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in a cloud data center. The findings provide a foundation for future research and develop-
ment, suggesting that predictive capabilities and operational decision-making in industrial
settings can be enhanced with further refinement and more sophisticated modeling tech-
niques.
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10 Future Work

This thesis has opened several avenues for further investigation into the predictive capabili-
ties of IT operations metrics. The exploration highlighted the necessity of having a complete
and continuous dataset for effective forecasting. However, gaps in data completeness have
posed significant challenges. Future studies could explore various imputation techniques or
synthetic data creation to address these gaps. Enhancing the dataset’s completeness could
improve model training and provide a richer, more nuanced understanding of the data.

Many of the metrics analyzed exhibited relatively static values, suggesting potential util-
ity in anomaly detection applications. These metrics could serve as indicators for system
health monitoring. Further research should focus on validating and refining the identifica-
tion of outliers, ensuring that the metrics used can reliably signal deviations that are truly
anomalous and worthy of attention.

The global nature of the data center’s operations, spanning multiple time zones, introduces
additional complexity and opportunity. Further studies could analyze the impact of ge-
ographical and temporal factors on data metrics. Understanding the workflow and peak
activity times of various teams worldwide could provide insights into operational demands
and help optimize resource allocation across different regions.

Additionally, the variability in file types before and after the dataset’s summer split offers
a unique opportunity to study the effects of data structure changes on the analysis. These
differences could reveal how data capture and categorization changes impact the predictive
models’ performance. This exploration might also uncover more about the interrelation-
ships between different types of data and how they inform the behavior of various hosts
within the network.

Moreover, the second split of the dataset merits specific attention to determine if it demon-
strates greater variance or enhanced predictive capabilities compared to the first. This com-
parative analysis could help identify which data characteristics are most beneficial for pre-
dictive modeling and lead to more robust forecasting techniques.

Future work could involve more detailed cross-validation, the application of additional ma-
chine learning models, and a deeper investigation into the specific patterns and behaviors of
different metrics across various hosts. This would help to build more robust and generaliz-
able predictive models, ultimately improving the efficiency and reliability of IT operations.

In conclusion, the breadth of potential research stemming from this initial exploration is
vast. Each area offers a path toward deeper understanding and more effective use of IT
operational metrics in predictive analytics. By continuing to build on the foundational work
laid out in this thesis, future research can advance the findings, driving toward more proac-
tive and informed IT operations management.
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10.1 Preliminary Exploration

In data exploration, it is common to use clustering as an unsupervised machine-learning
method to identify natural groupings. This technique was employed in the early phases of
the project. However, considerable domain knowledge, instinct, and experience are neces-
sary for effective clustering. Clustering relies on the natural grouping of data points based
on their similarities. Some iterations produce different clusters for similar data points, which
is harder to interpret. This prompted the search for more standard statistical tools that pro-
vide more definitive answers. This could mean that applying more domain expertise could
be a valuable way to look at the data again.
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[3] Lisa Ehrlinger and Wolfram Wöß. A survey of data quality measurement and moni-
toring tools. Frontiers in Big Data, 5, 2022.

[4] Christina Ellis. Number of trees in random forests. https://crunchingthedata.c
om/number-of-trees-in-random-forests/, 2022. Accessed: 2024-05-20.

[5] Arash Erfani, Tohid Jafarinejad, S. Roels, and D. Saelens. Linking dataset quality
and mpc in buildings: impact of temporal resolution. Journal of Physics: Conference
Series, 2654, 2023.

[6] J. H. F. Flores, P. Engel, and R. Pinto. Autocorrelation and partial autocorrelation
functions to improve neural networks models on univariate time series forecasting.
The 2012 International Joint Conference on Neural Networks (IJCNN), pages 1–8,
2012.

[7] Asst Hamdard and Hedayatullah Lodin. Effect of feature selection on the accuracy of
machine learning model. INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY
RESEARCH AND ANALYSIS, 06, 09 2023.

[8] John Hauser and Gerry Katz. Metrics: You are what you measure! European Man-
agement Journal, 16:517–528, 10 1998.
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A Appendices

A.1 Data Quality - Consistency between Metrics

This showcases the inconsistency in the metric collections between the hosts.

Figure 29: The Y-axis shows the number of hosts with the X-axis, amount of metrics. It
explains how most hosts do not share the same amount of metrics, whereas
most hosts only contribute with two metrics.
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A.2 Time Variability

This showcases the inconsistency between hosts when collecting metrics for the whole pe-
riod before the split. Some hosts have more gaps in data from collecting than others.

Figure 30: The Y-axis shows the variance in time for hosts. The X-axis shows hosts. The
difference in variance collected between the metrics displays a small inconsis-
tency.
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A.3 Histogram of data

Figure 31: Histograms of the data, demonstrating the data distribution among metrics.
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A.4 Weekly Trends

Figure 32: CPU activity shown between weekends and weekdays, where each plot rep-
resents a different Host. As it shows the metric CPU idle time, lower values
correspond to higher activity. More outliers are shown during weekdays, which
could be assumed to be spikes in CPU usage.
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A.5 Data between all hosts from the established dataset

This showcases all hosts’ metric activity for the established dataset.

Figure 33: The Y-axis shows each line’s value and metric activity, and the X-axis is the
time period. This shows the real scale with no limit to the Y-axis of all host’s
metrics during the 34-day period.

Figure 34: The Y-axis shows each line’s value and metric activity, and the X-axis is the
time period. This shows the Y-axis limited scale to 100 of all host’s metrics
during the 34-day period.
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A.6 PACF and ACF graphs 3D daily Resolution

Figure 35: 3D graphs over PACF significant metrics, where the Y-axis is the value of each
lag, the X-axis is the corresponding lag, and the Y-axis is the quantity of the
responding metric.
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Figure 36: 3D graphs over ACF significant metrics, where the Y-axis is the value of each
lag, the X-axis is the corresponding lag, and the Y-axis is the quantity of the
responding metric.
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A.7 PACF and ACF graphs 3D Hourly Resolution

Figure 37: 3D graphs over PACF significant metrics, where the Y-axis is the value of each
lag, the X-axis is the corresponding lag, and the Y-axis is the quantity of the
responding metric.
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Figure 38: 3D graphs over ACF significant metrics, where the Y-axis is the value of each
lag, the X-axis is the corresponding lag, and the Y-axis is the quantity of the
responding metric.
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A.8 Four weeks plot used for prediction

These are the weeks of data that the ML model was tested on.

Figure 39: The Y-axis shows each line’s value and metric activity, and the X-axis is the
time period. A true scale of (Y-axis is not limited) the weeks that were used to
perform predictions. Each plot represents one week.

Figure 40: This shows the Y-axis limited scale to 100 of all weeks metrics, and the X-axis
is the time period. Each plot represents one week.
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